Automated Live Trap

Project Report

May 35, 2017

Group 53

Bryan Goings
Michael Krause

Jason Leleune

Samuel Thomberry

Table of Contents

TR P . e ieiit it ittt et ee s roaesaee et caeanasae et e aeaonetataaaeaeanrrentaeararaaaanans 1
Table OF COMEEIIIS . e ittt cnt it ittt ter e rerenr s s et tenaranssresssasenesrresssresrerersnssrnnsesensrnsonns 2
DS I SUMIMIAIY . .\ ttiniittieirtenrnene i ata e e aa e tetantaenaaesneateaancaeaneneusaoaeanrnesonenasnnins 3
System Details.......oooeiiiiiiiiiii e e 6
Design Evaluation.......c.cooiiiiiiiiiiiiiiiiiiiii e e e e 11
Partial Parts Last. .. .coiitiiitiiiit ittt i i i ittt e it it e i e e e et tre et aanean e ran e anae 13
| IS0 T3 =T 1 1 1= o P P P 14
Appendices
A: Detailed Pic 16f88 Wiring DiaBram.........ocooimiiiritiiiiiiaiiciiisiiieeieeennenenenenes 16
B: Detailed Arduinc Uno Wiring Diagram..........cccoevniimiiiiiiiiiiiiiiiiniesinaesinesine 17
G Bill Of Materials. .. oo ceiit vt i ie it etier it aenreasseisaeerasesnntntrennsanssaneasnenenns 18
D: Commented Pic Code......ocoiiniiii i it e e e 19
E: Commented Arduino Code.......ooiiiiiiiiiiiiiiiiiiiiierieiisiererirerssiiarsicsriecsroreaesnsan 21

5
L Ry T L O 25

Design Summary

Live traps are commonly used in a wide range of applications, primarily for humane removal of
pests or for field research purposes. Currently, live traps on the market function in a strictly
mechanical manner, requiring significant user input and interaction. To address this common
issue, a live trap was constructed that retains all of the important aspects of currently available
models, while implementing a range of mechatronic systems to reduce the overall required user
interaction.

A master power switch is used to turn the system on and off. When “on” the system will boot,
with the trap in safe mode, meaning the motor will not keep the gate open or closed. A second
switch will be used to arm or disarm the trap, this switch will allow the motor to be controlled by
the Arduino UNO. When triggered, the gate will close and both audio and visual signals, a red
LED and a tone, will indicate that the gate is closed. The reset button raises the gate and triggers
a second visual cue, a green LED.

LED Indicators B .

Trap Reset Switches
Button

ESP WiFi control

ASEBRRER
~|rl|IHIIII'IF'|I'|

| uR ik e
,.’.F.l',i'....,uﬂ J

At ii'“ll

T § 151}

Figure 1: The control panel of the live trap, showing all control switches and the LED’s

This trap utilizes a small NEMA 17 stepper motor to operate a gate that closely resembles that
found on standard live traps. Using a system of gears affixed to both the motor and the gate, the
trap will automatically open and close upon receipt of a specific signal from an Arduino
microcontroller. To set the trap, the Arduino is interfaced with both a manual user input (button)
and WiFi module. By pressing either the button affixed to the trap, or indicating it remotely via
WiFi, the Arduino will signal the stepper motor to open the gate to arm the trap.

Figure 2: The NEMA 17 motor and gears at the front of the trap are shielded by a 3D printed
cover.

A PIR sensor will be located towards the rear of the trap that will be directly connected to the
Arduino. Upon detecting movement of a curious animal, a signal is sent to the Arduino. After
receiving this signal, the Arduino triggers the stepper motor to close the gate of the trap and
triggers audio and visual cues. At any time the user can use the remote interface to either stream
video of the trap or take single still photos. Additionally, if an undesired animal is caught the
user can use the remote interface to raise the gate and set the animal free, and then reset the trap.

7 — l._\\—.
= 2 g A=
=7 L TR AT N
T o ijalalamy o -
(=] -’i"l’""‘i‘ 1)
i o o .
- W =
(7 Y Y = P . -
o 3 5
g

Figure 3: A view of the PIR motion sensor used to detect motion in the trap.

System Details

In this project, a live trap was mechanized for easier use. Figure 4 below shows the basic layout of the
different components. The PIC controls the LED’s and interfaces with the Arduino. The ESP receives
input from the camera, and interfaces with the Arduino. The Arduine receives power from the switch,
receives input from the gate control button, and controls the speaker and stepper motor. The Stepper
motor uses a gear train to open the gate.

Gate Control

Stepper motor

Gears connecting the gate
to the stepper motor

\
\

-— .
""ﬁ
'\

[
LU Ll L)]

| M ——

AL
[[]]

=

P

/]
¢

K
2,

PIC

h

4

Gate

Figure 4: Diagram showing components of live trap

The gate subsystem of the device is a core feature that directly controls both the open and close
behavior according to certain inputs. A simple gear train is connected directly to the gate and is
utilized to transmit torque from a NEMA 17 stepper motor. This system is housed within a 3D
printed housing, as seen in the left hand side of Figure 2. This gear train system is not only
responsible for opening and closing the gate, but also maintaining said position to prevent the

escape of the trapped animal or accidental closure. To control this rotational motion, the stepper
motor is connected to the A4988 driver module, shown below in Figure 5.

Q20000300
000020
230000
Q0000320
GOGEDDEOG

000020000000
[«]+]

cgopo
20000600

Q000
Qa300a0
0000030

2000

0000
o}
Q0200
Oodcas
Qooa0
Q00000000
0330001

Figure 5: A4988 Driver Module connected to stepper motor and Arduinc Uno

The A4988 driver module contains logic that allows 2 input signals from an Arduino Uno to be
converted into directional rotation of the stepper motor. The Arduino is programmed to send
signals to these two driver inputs when a certain manual input (WiFi or direct manual input) or
signal from the PIR sensor is received. One signal controls the direction of the stepper motor,
while the other signal dictates how many steps, or pulses, the motor must execute.

Figure 6: PIC16F88 circuit used to control LED output

Figure 6 shows the pic circuit controlling the two LEDs. The red LED is connected to port B1
and the green LED is connected to port BO of the pic. Initially the green LED is lit up while the
red LED is off. While the button in figure 6 is pressed down, the the green LED turns off and the
red LED begins to flash. The button is replaced in the finished product as a signal received by
the pic from the arduino once the trap gate closes. '

As seen in Figure 7 above, the ArduCAM is connected to the ESP8266. The ESP8266 can then
send a livestream of the cage via wifi by entering the local IP address of the ESP8266 into a web
browser with the handle “stream”. If the IP address is entered with the handle “button”, the
ESP8266 will send a signal to the Arduino, which then opens or closes the gate. The ESP8266
receives power from a 3.3V voltage divider. This voltage divider has an input of 5V from the
Arduino.

A functional diagram for the project can be seen in figure 8 below. This diagram shows how the
two microcontrollers are connected to the rest of the system.

PIC gives audio and

Swiich t Arm the trap visual confirmation

Sensar triggers rap

toor shuts and uploads
image to APP

Figure 8: Functional diagram for the automated live animal trap.

A software flowchart for the project is shown below in figure 9. This flowchart demonstrates the
process that the animal trap goes through as certain user and non-user inputs are activated. The
flowchart explains the pic and the arduino microcontroliers.

Power switches o = | OFF — + | No operation
v
ON
3 Signals pic to turn on
Arduino can receive signals + | AND - power indicator LED
Button is pressed |[— —*!| OR . “set” Is selected via wifi
F 3

Arduino signals motor to open gate

l Sensor does not
Senor detects movement = OR = detect movement

l l

Arduino receives “high” signal
and activates motor to close gate

——»| AND Gate remains open

|

Arduino signals camera to High signal sent to pic to blink
capture image and upload “armed” LED

via wifi

i

High signal sent to speaker

Figure 9: Software flowchart for project

Appendices A and B include wiring diagrams for the pic and the Arduino circuits respectively.
The wiring diagrams were drawn using free software from Fritzing. The code used to program

10

the pic is shown in Appendix D and the arduino code can be found in Appendix E. There is also
a bill of materials listed in appendix C.

Design Evaluation

Required functional element category A: Output Display was met in the form of two LEDs and a
video/photo stream. One LED with a solid green light denotes that the device has power and is
ready to be used. Once the motion sensor detects motion and causes the animal trap gate to shut,
the solid green LED tumns off and a flashing red LED turns on. This red LED continues flashing
until the animal trap gate is opened, and at which time the red turns off and the green turns back
on. A Picl6f88 controls the LEDs (code in appendix) and communicates with an Arduine Uno
to know when the motor has closed the gate signifying that the green LED should tumn off and
red LED should turn on. This shows a functionality, repeatability, and decent effort. An LED
being controlled by a pic was discussed in the lab, but using multiple LEDs controlled by a pic
that also communicated with an Arduino to supply the high or low signal for the LEDs required
out of class research and learning. Additionally, an ArduCam Mini was interfaced with an
ESP8266 WiFi module to provide a visual output of the interior of the cage streamed to a laptap.
To achieve this function, significant research was required to understand how to interface the
camera, ESP8266, Arduino, and personal computer seamlessly.

Required functional element category B: Audio Output Device was met in the form of an 8 Hz
speaker with software-generated sound effects. The speaker was connected to an Arduino Uno
with the melody made from different pitches and note durations. The code can be found in the
appendix. The speaker plays the melody every time the animal trap gate is closed. This speaker
melody is both functioning and repeatable and required a level of added effort. The hardware
was easily connected to the Arduino, but software in the form of the pitches and lengths of notes
required some research into which pitches sounded pleasant to the human ear, and what lengths
would produce the melody desired.

Required functional element category C: Manual User Input was met through multiple toggle
switches and a push button. The first toggle switch provides power to the microcontrollers
(Pic16f88 and Arduino Uno). The second toggle switch turns on the motor and allows the
animal trap gate to open and close by the stepper motor. The third toggle switch is used to
connect the ESP8266 module to the Arduino. When the ESP8266 is connecting to WIFI, pin 2
needs to be disconnected. Once the ESP8266 has connected, the switch can be flipped. The
push button allows the user to open the gate once it has been closed. These manual user inputs
are both functioning and repeatable. The fact that there are multiple user inputs producing
different outputs demonstrates the fact that more of an effort was put into this category than
simply creating a switch that turned on the power and stopping there. An additional manual user

1

input is the ability to open and close the gate from a web browser. The ESP8266 receives a
signal via WIFL. It then communicates with the Arduino to control the motor. This manual user
input functions, is repeatable, and required substantial independent research as it was not covered
in class, the lab, or the textbook.

Required functional element category D: Automatic Sensor was met through the use of a
proximity sensor attached in the back of the trap. The proximity sensor is hooked up to the
Arduino and once it detects motion, it allows for a signal to be sent to the stepper motor to close
the trap gate. This automatic sensor is functioning, repeatable, and required significant research
to successfully integrate with the rest of the system. Proximity sensors were not covered in lab
and very briefly touched on in the textbook which caused the group to do independent research
to learn about this type of automatic sensor.

Required functional element category E: Actuators, Mechanisms and Hardware was met through
the use of a stepper motor. The motor and driver are connected to the Arduino. Once the stepper
motor receives a signal from the Arduino, it opens the trap gate. This signal comes from either
the wifi or push button manual user inputs. Once the proximity sensor detects motion, a signal is
sent from the Arduino so that the motor closes the trap gate. The stepper motor is both
functional and repeatable. Stepper motors were not covered in the lab, and were covered in one
lecture of the semester. Due to the lack of in depth coverage of this type of actuator, significant
research was required to achieve successful integration of the motor and driver with the rest of
the project. The stepper motor selected was a NEMA 17 bipolar version as bipolar stepper
motors offer greater torque due to energizing all coils with alternating polarity such that all coils
actively turn the motor. Each step of the motor was determined to be 1.8 degrees from the
manufacturer data sheet, so a rough calculation was performed to determine the motor step count
to be executed by the code. Originally approximately 80 steps were specified, however after
testing the system, the step count was fine tuned to 95 steps. Although 90 degrees of motor
rotation is only approximately 50 steps, a greater value of steps were needed due to the gear
reduction of the gear train.

Required functional element category F: Logic, Processing, and Control; AND Miscellaneous
(functional elements not covered in the categories above) was met through the use of open-loop
control. No feedback is given to indicate that the trap gate is opened. The push button or wifi
can trigger the gate to open even if it is currently in an opened state. If this occurs, an audible
noise can be heard which is the motor trying to open the gate. This essentially does nothing and
the system continues to operate as normal. The outputs of the system are not fed back to the
inputs.

12

An Arducam Mini camera and OV5642 camera shield was also connected to the back of the trap.

Upon command the camera can either take a photo or stream video of the trap to an IP address,
via wifi, that the user can access to view and save the image or video. The open loop logic is

functional and repeatable with moderate additional required effort. The camera was not covered

in lab, class, or the book and required substantia! independent research and effort for successful
integration.

Partial Parts List

Table 1: Partial parts list for project

l ltem Quantity | Total Price Retailer
1 Stepper Motor 1 $13.50 Amazon
2 Motor Driver 1 $5.69 Amazon
3 Camera 1 $39.99 Amazon
4 ESP8266 1 $6.95 Sparkfun
5 PIR Sensor 1 $9.95 Sparkfun
6 Wire Jumpers 1setof10| $3.90 Sparkfun
9 Live Trap 1 $31.99 JAX Farm Supply
11 Heat Shrink 1package | $3.98 Home Depot
12 Split Loom 1coil $4.89 Home Depot
15 Speaker 1 $4.75 | Mountain State Electronics
16 Toggle Switch 2 $3.24 Radio Shack
18 5 and 3.3V Voltage Regulators 2 $5.47 | Mountain State Electronics
19 Arduino 1 $18.82 Amazon
22 PIC 16F88 1 Free Microchip
23 M3 Fasteners 1package | $2.19 Home Depot
25 3d Printer Filament 1 $24.99 Amazon
27 Gears 2 $12.98 Amazon
28 #4 Fasteners 2 packages| $2.53 Home Depot

The table above shows parts used in the project other than common components used in lab or
mentioned in class such as LEDs, switches, resistors, etc. as well as the price and retailer. The

total project expenses came to a grand total of $290.36 which includes the parts listed above, as
well as common components. A full bill of materials can be found in the appendix.

13

Lessons Learned

Problems faced and solved:

1. We needed a way to cover up the wires and other components of our project without
increasing weight by much. We made use of CSU’s 3D printing lab which allowed for
quick lightweight parts to be produced.

2. Group members not knowing what to do once their assigned task was completed. We
solved this by making a list of all remaining objectives and having group members move
on to the next one once they were finished with their current one.

3. We needed replacement parts for some electrical components very quickly. We did not
have time to wait to have them shipped by online vendors so we made use of local shops
including Mountain State Electronics, RadioShack, and Sparkfun (in Boulder).

4. All group members were busy with other classes and extracurricular obligations so it was
difficult to find a regular time for everyone to meet every week. This was solved by the
group sitting down in person and comparing schedules to find a regular time every week
where everyone was available to meet in the lab to work.

5. A few of the components we used were not covered in class and no one felt confident on
how to create the circuits successfully. To solve this issue we made use of online forums
and tutorials. There were relatable if not very similar examples online for many of the
components we were using which was very helpful in troubleshooting.

Recommendations for future students:

1. Start on the mechanical parts as quickly as possible. Most of the electrical and software
componenis will be covered later in the semester.

2. Always buy extra parts for the project in case something breaks unexpectedly (especially
electrical components).

3. Make expectations of group members very well known and think about creating a
contract that all members sign.

14

. Make use of online tutorials on how to create electrical circuits. Most of the circuits used

in the project have been built and explained online by a professional.

. Focus on gradable content first and if you have time go back and add extra components to
the project.

. Ask other classmates (not in your group) for advice and help when stuck on something.

. Look at online forums for pic and arduino troubleshooting.

15

Appendix A: Pic 16f88 wiring diagram

i

1

330Q

3300

WW

Green

5t

Red

||

PIC16F88
DIP

II];_lIII
2

1k£2

El__”w""_‘

16

Slepper Driver

A4988

EN VMOT

__ ..M 10k Proximity Sensorl
5V
mz—u Stepper Motor it | m<_ |_|
ROB-08420 4 o
28 HW O _.|.|._ SPEAKER
| L
2A e e =
Ardutno
Lina
1A &
18 .H
vDD
5 Tun PU——
Ardu mqw;m% -
GND A I—
am
mo T
Vohage g -
—au.w‘“ﬂ-b_. _ -

Appendix C: Bill of Materials

ltem Quantity Total Price Retailer
1 Stapper Motor 1 $13.50 Arnazon
2 Motor Driver 1 $5.69 Amazon
3 Camera 1 535,99 Amazon
4 ESPB2EE 1 56.95 Sparifun
5 PIR Sensor 1 $9.95 Sparkfun
[Wire Jumpers 1setoflD 5350 Sparkfun
7 Protoboard 1 57.95 Sparkfun
8 Wire 5 Spools 517.79 Sparkfun
9 Live Trap 1 53199 JAX Farm Supply
10 Push Sutton 1 55.19 Home Depot
11 Heat Shrink 1 packg;e 5398 Home Depot
13 Split Loom 1 coil 5489 Home Depot
13 9V Battery 2 $6.39 Batterias Plus
14 12V Battery 1 $13.95 Batteries Plus
15 Spesker 1 5475 Mountain State Elactronics
16 Toggle Switch 2 53.25 Radic Shack
17 9V Adaptor 1 £0.59 Mountain State Electronics
18 5 and 3.3Y Voltage Rezuiators 2 55.47 Mountain State Electronics
19 Arduino 1 51882 Amazon
20 Breadboard 2 57.99 Amazon
21 LED's 2 51.12 Amazon
22 PIC 16F88 1 Fraa Microchip
23 M3 Fasteners 1 package 52.19 Home Depot
24 3D Printer Fee 1 $25.00 12P Lab
25 3d Printer Filarmment 1 52495 Amazon
26 JBWeld 1 58.58 Ace Hardware
27 Gears 2 51298 Amazon
28 #4 Fastenars 2 packages 52.53 Home Depot

| GrandTotal | 529036

18

Appendix D: Pic16{88 code

' PICl6F88

code template for MECH307 Labs

' The following configuration bits and register settings
' enable the internal oscillator, set it to 8MHz,
' disables master clear, and turn off A/D conversion

' Configuration Bit Settings:

' Oscillator INTRC (INT102) (RA6 for I/0)
' Watchdog Timer Enabled

' Power-up Timer Enabled

' MCLR Pin Function Input Pin (RAS for I/0)
' Brown-out Reset Enabled

' Low Voltage Programming Disabled

' Flash Program Memory Write Enabled

' CCP Multiplexed With RBO

' Code Not Protected

' Data EEPROM Not Protected

' Fail-safe Clock Monitor Enabled

' Internal External Switch Over Enabled

' Define configuration settings (different from defaults)

#CONFIG

__CONFIG CONFIGl, INTRC_IO & _PWRTE ON & _MCLR_OFF & _LVP_OFF

#ENDCONFIG

' Set the internal oscillator frequency to 8 MHz

DEFINE 0OSC
OSCCON.4 =
OSCCON.5
OSCCON. 6

I

' Turn off

ansel = 0

' Put your

8
1
1
1
the analog to digital converters.

code here:

19

' Declare variables and pin assignments
ledD var PORTB.O 'bit 0 green LED
ledl Var PORTB.1 'bit 1 red LED

' Initialize the I/0 pins

TRISA = %00001110 'PORTA pins 1,2,3 are inputs
TRISB = %00000000 'all PORTB pins are outputs
'Main Loop
Myloop:
High PORTB.0 'turn on green LED
Low PORTB.1 'turn off red LED
Do While (PORTA.1 == 0) 'while switch is pressed
Low PORTB.O 'turn off green LED
High PORTB.1 'turn on red LED
Pause 100 'pause 0.1 sec
Low PORTB.1 'turn off red LED
Pause 100 'pause 0.1 sec
Loop

Goto myloop 'go back to beginning of loop

Appendix E: Arduino Uno Code

#include "pitches.h”

/{ defines pins numbers

const int stepPin = 3;

const int dirPin = 4;

const int button = 7;

const int MOTION_PIN = 2; // Pin connected to motion detector
const int LED_PIN = 13; // used for the motion sensor

const int PIC = 8;

const int ESP = 6;

/! define variables
int previous;
int reading;

// notes in the melody:

int melodyf] = {

NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4
I

/f note durations: 4 = quarter note, 8 = eighth note, etc.:
int noteDurations[j = {

4,8,8,4,4 4, 4,4

h

void setup() {
/l Sets the two motor pins as outputs and the button pin as an input
pinMode(stepPin,OUTPUT);
pinMode(dirPin,OUTPUT);
pinMode(button, INPUT);
/lcalls the gate closed
digitalWrite(dirPin,LOW);

Serial.begin(9600);

lIsets up the motion sensor pins

21

pinMode(MOTION_PIN, INPUT_PULLUPY),
pinMode(LED_PIN, OUTPUT);

/I sets up the pic output and esp input
pinMode(PIC, OUTPUT);
digitalWrite{PIC, HIGH),
pinMode(ESP, INPUT);

If gives reading and previous equal initial values
reading = LOW,

previous = LOW;

}

void foop() {

/Isets up motion detector
reading = digitalRead(button);
int proximity = digitalRead(MOTION_PIN);
if (proximity == LOW) // If the sensor's output goes low, motion is detected
{
digitalWrite(LED_PIN, HIGH);
}
else
{
digitalWrite(LED_PIN, LOW);
}

/iwhen the button is pressed

if(((reading == HIGH && previous == LOW) || (reading == LOW && previous == HIGH))) {
delay({100);

if(((reading == HIGH && previous == LOW) || (reading == LOW && previous == HIGH)}) {

if(digitalRead(dirPin) == LOW) { /fif the gate is closed, it opens and delays for 5 seconds

for{int x = 0; x < 95; x++) {
digitalWrite(stepPin,HIGH);
delayMicroseconds(500);
digitalWrite(stepPin,LOW);
delayMicroseconds(500);

}
delay(1000); // One second delay

22

digitalWrite(dirPin,HIGH); //Changes the rotations direction
/f Makes 400 pulses for making twe full cycle rotation
digitalWrite(PI1C, HIGH);
delay(5000);
}
else { //if the gate is open, it closes
for(int x = 0; x < 95; x++) {
digitalWrite(stepPin,HIGH);
delayMicroseconds(500);
digitalWrite(stepPin,LOW),
delayMicroseconds(500),

}

digitatWrite(dirPin,LOW); // Enables the motor to move in a particular direction
// Makes 78 pulses for making 140.4 deg cycle rotation

delay(1000);
}
previous = reading;
}
}

{When a signal is sent from the ESP
if(digitalRead(ESP) == HIGH) {
delay(200);
if(digitalRead(ESP)==HIGH) {

if(digitalRead(dirPin) == LOW) { //if the gate is closed, it opens and delays for 5 seconds

for(int x = 0; x < 95; x++) {

digitalWrite(stepPin,HIGH);
delayMicroseconds(500);

digitalWrite(stepPin,LOWY);
delayMicroseconds(500);

}

delay(1000); // One second delay

digitalWrite(dirPin,HIGH); //Changes the rotations direction

I/l Makes 400 pulses for making two full cycle rotation

digitalWrite(PI1C, HIGH);

delay(5000);

}

else { /fif the gate is open, it closes
for{int x = 0; x < 95; x++) {
digitalWrite(stepPin,HIGH);

delayMicroseconds(500);
digitalWrite(stepPin,LOW);
delayMicroseconds(500),

}
digitalWrite(dirPin,LOW),
delay(1000),
}
}
}

if(digitalRead(LED_PIN) == HIGH && digitalRead(dirPin) == HIGH) { //if the motion sensor is
triggered and the gate is open, the gate closes, the buzzer sound plays, and the light attached to
the PIC flashes

for(int x = 0; x < 95; x++) {
digitalWrite{stepPin,HIGH);
delayMicroseconds(500);
digitalWrite{stepPin,LOW);
delayMicroseconds(500);

}

/IPIC
digitalWrite(PI1C, LOW);

// iterate over the notes of the melody:
for (int thisNote = 0; thisNote < 8; thisNote++) {

// to calculate the note duration, take one second

// divided by the note type.

/le.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
int noteDuration = 1000 / noteDurations[thisNote];
tone{9, melody[thisNote], noteDuration);

to distinguish the notes, set a minimum time between them.

/1 the note's duration + 30% seems to work well:

int pauseBetweenNotes = noteDuration * 1.30;
delay(pauseBetweenNotes);

{/ stop the tone playing:

noTone(9);

}
delay(1000); // One second delay

digitalWrite(dirPin,LOW); //Changes the rotations direction

24

/I Makes 400 pulses for making two full cycle rotation
}

Appendix F: ESP8266 Code

Hlibraries included

#include ‘ESP8266WiFi.h’

#include ‘WiFiClient.h’

#include ‘ESP8266WebServer.h’'

#include ‘ESP8266mDNS.h’

#include ‘Wire.h'

#include ‘ArduCAM.h'

#include ‘SPIL.R'

#include ‘memorysaver.h’

#if |(defined ESP8266)

#error Please select the ArduCAM ESP8266 UNO board in the Tools/Board
#endif

l/Error warning if the correct camera isn't connected

#if |(defined (OV2640_MIN]_2MP)||defined (OV5640_MINI_SMP_PLUS) || defined
(OV5642_MINI_S5MP_PLUS)\

|| defined (OV5642_MINI_5MP) || defined
{OV5642_MINI_SMP_BIT_ROTATION_FIXED)\

||(defined (ARDUCAM_SHIELD_V2) && (defined (OV2640_CAM) || defined
{OV5640_CAM) || defined (OV5642_CAM))))

#error Please select the hardware platform and camera module in the
.flibraries/ArduCAM/memorysaver.h file

#endif

/lsets pin 2 to send send a pulse to the arduino

int PulsePin = 2;

I set GPIO16 as the slave select :

const int CS = 16;

/lyou can change the value of wifiType to select Station or AP mode.

IIset the wifitype type to station

int wifiType = 0; // 0:Station 1.AP

/AP type settings

const char *AP_ssid = "arducam_esp8266";

//Default is no password.If you want to set password,put your password here
const char *AP_password = "";

//Station mode settings

const char *ssid = "MIKE-PC789"; // Put your SSID here

const char *password = "67j422/C&quof;; // Put your PASSWORD here
static const size_t bufferSize = 1080;

25

static uint8_t buffer[bufferSize] = {0xFF};

uint8_t temp = 0, temp_last = 0;

inti=0;

bool is_header = false;

/fdefining the camera

ESP8266WebServer server(80);

#if defined (OV2640_MINI_2MP) || defined (OV2640_CAM)
ArduCAM myCAM(OV2640, CS);

#elif defined (OV5640_MINI_SMP_PLUS) || defined (OV5640_CAM)
ArduCAM myCAM(OV5640, CS);

#elif defined (OV5642_MINI_SMP_PLUS) || defined (OV5642_MINI_5MP) || defined
(OV5642_MINI_5MP_BIT_ROTATION_FIXED) ||(defined (OV5642_CAM))
ArduCAM myCAM(OV5642, CS);

#endif

void start_capture(){

myCAM.clear_fifo_flag(),

myCAM,start_capture();

}

//setting up the camera

void camCapture(ArduCAM myCAM)

WiFiClient client = server.client();

uint32_t len = myCAM.read_fifo_length();

if (len >= MAX_FIFO_SIZE) //8M

{
Serial.printin(F{"Over size."));

}
if (len==0)//0 kb

{

Serial.printin{F("Size is 0.")),

}

myCAM.CS_LOW();

myCAM.set_fifo_burst();

if (Iclient.connected()) return;

String response = "HTTP/1.1 200 OK\r\n";
response += "Content-Type: image/jpegiw\n";
response += "Content-len; " + String(len) + "\nn\r\in";
server.sendContent(response),

i=0;

while (len-)

{

temp_last = temp;

temp = SPL.transfer(0x00);

/fRead JPEG data from FIFO
if ((temp == 0xD9) && (temp_last == 0xFF)) //If find the end ,break while,
{

buffer[i++] = temp; //save the last 0XD9
//Write the remain bytes in the buffer
if (client.connected()) break;

client.write{&buffer[0], i};
is_header = false;

i=0;

myCAM.CS_HIGH();

break;

}

if (is_header == true)

{

/M\Write image data to buffer if not full

if (i < bufferSize)

buffer{i++] = temp;

else

{

I\Write bufferSize bytes image data to file
if (Iclient.connected()) break;
client.write(&buffer[0], bufferSize});

i=0;

buffer[i++] = temp;

}

}

else if ((temp == 0xD8) & (temp_last == OxFF))
{

is_header = true;
buffer[i++] = temp_last;
buffer[i++] = temp;

}

}

}

void serverButton () { /setting up the button handle
WiFiClient client = server.client();

digitalWrite(PulsePin, HIGH);
delay(500);
digitalWrite(PulsePin, LOW);

// Read the first line of the request

String request = client.readStringUntil('\r'),
Serial.printin(request);

client.fiush();

// Match the request

if (request.indexOf{"/button") 1= -1) {
digitalWrite(PulsePin, HIGH),

delay(500);

digitalWrite(PulsePin, LOW);

}

27

// Return the response

client.printin("HTTP/1.1 200 OK");
client.printin("Content-Type: text/htmi");
client.printin(""); // do not forget this one
client.printin{"&It;IDOCTYPE HTML>");
client.printin{" &It;html> ");

client.printin{"Gate Controls");
delay(1);

Serial.printin{"Client disonnected");
Serial.printin{"");

}

void serverCapture(} //setting up the capture handle
start_capture();

Serial.printin{F(",CAM Capturing"));

int total_time = 0;

total_time = millis();

while {ImyCAM.get_bit{tARDUCHIP_TRIG, CAP_DONE_MASK));
total_time = millis() - total_time;

Serial,print(F ("capture total_time used (in miliseconds):."));
Serial.printin(total_time, DEC);

total_time = 0;

Serial.printin(F(" CAM Capture Done."));

total_time = millis();

camCapture(myCAM);

total_time = millis() - total_time,

Serial.print{F("send total_time used (in miliseconds):"));
Serial.printin(total_time, DEC);

Serial.printin(F("CAM send Done."));

}

void serverStream(){ //setting up the stream handle

WiFiClient client = server.client();

String response = &quof;HTTP/1.1 200 OK\r\n";

response += "Content-Type: multipart/x-mixed- replace; boundary=frame\r\in\rin";
server.sendContent(response);

while (1)

start_capture();

while (ImyCAM.get_bit{ARDUCHIP_TRIG, CAP_DONE_MASK));
size_t len = myCAM.read_fifo_length();

if (len >= MAX_FIFO_SIZE) //8M

{

Serial.printin(F (" Over size."));

continue;

}
if len==0)//0kb

{
Serial.printin{F("Size is 0."));

continue;

}

myCAM.CS_LOW();
myCAM.set_fifo_burst();

if (Iclient.connected()) break;

response = "-- frame\r\n";
response += "Content-Type: image/jpeg\rin\r\n";
server.sendContent(response);

while (len--)

{

temp_last = temp;

temp = SPl.transfer(0x00),

/IRead JPEG data from FIFO

if ((temp == 0xD9) && (temp_last == OxFF) } //if find the end ,break while,
{

buffer{i++] = temp; //save the last 0XD9
//\Write the remain bytes in the buffer
myCAM.CS_HIGH();;

if (Iclient.connected()) break;
client.write(&buffer[0], i);
is_header = false,;

i=0;

}

if (is_header == true)

{

/{Write image data to buffer if not full

if (i < bufferSize)

buffer[i++] = temp;

else

{

//Write bufferSize bytes image data to file
myCAM.CS_HIGH();

if (Iclient.connected()) break;
client.write(&buffer[0], bufferSize);
i=0;

buffer]i++] = temp;
myCAM.CS_LOW();
myCAM.set_fifo_burst();

}

}

else if ({temp == 0xD8) & (temp_last == OxFF))
{

is_header = true;

buffer[i++] = temp_last;

buffer[i++] = temp;

}

}

if {Iclient.connected()) break;

}

}
void handleNotFound(){ //setting up the IP display with no handle

String message = "Server is runninglin\n";

message += "URI: ";

message += server.uri{);

message += "\nMethod: ";

message += (server.method() == HTTP_GET)?"GET":"POST";
message += "\nArguments: ";

message += server.args(),

message += "\n";

server.send(200, "iext/plain", message),

if (server.hasArg("ql")X

int ql = server.arg("gl").toint();

#if defined (OV2640_MINI_2MP) || defined (OV2640_CAM)
myCAM.OV2640_set JPEG_size(ql);

#elif defined (OV5640_MINI_SMP_PLUS) || defined (OV5640_CAM)
myCAM.OV5640_set JPEG_size(ql);

#elif defined (OV5642_MINI_5MP_PLUS) || defined
(OV5642_MINI_S5MP_BIT_ROTATION_FIXED) ||(defined (OV5642_CAM))
myCAM.OV5642_set_JPEG_size(ql);

#endif

delay(1000);

Serial.printin("QL change to: " + server.arg("gl"));
}

}
void setup() {

uint8_t vid, pid;

uint8_t temp;

#if defined(__SAMS3XS8E_)

Wire1.begin();

#else

Wire.begin();

#endif

Serial.begin(115200);
Serial.printin(F("ArduCAM Startl"));
I/ set the CS as an output:

pinMode(CS, OUTPUT);

/! initialize SPI:

SPl.begin();

SPl.setFrequency(4000000), //4MHz

//Check if the ArduCAM SPI bus is OK
myCAM.write_reg(ARDUCHIP_TEST1, 0x55),
temp = myCAM.read_reg(ARDUCHIP_TEST1);
if (temp 1= 0x55){

Serial.printin(F("SPI1 interface Errorl"));
while(1);

}

30

#if defined (OV2640_MINI_2MP) || defined (OV2640_CAM)

//Check if the camera module type is OV2640
myCAM.wrSensorReg8_8(0xfT, 0x01);
myCAM.rdSensorReg8_8(0V2640_CHIPID_HIGH, &vid);
myCAM.rdSensorReg8_8(0OV2640_CHIPID_LOW, &pid);

if ((vid 1= 0x26) && ((pid != 0x41) || (pid != 0x42)))
Serial.printin(F("Can't find OV2640 module!"));

else

Serial.printin(F("0V2640 detected."));

#elif defined (OV5640_MINI_S5MP_PLUS) || defined (OV5640_CAM)
/ICheck if the camera module type is OV5640
myCAM.wrSensorReg16_8(0xif, 0x01);
myCAM.rdSensorReg16_8(0V5640_CHIPID_HIGH, &vid);
myCAM.rdSensorReg16_8(0V5640_CHIPID_LOW, &pid);

if({vid = 0x56) || (pid != 0x40))

Serial.printin(F("Can't find OV5640 module!&guot;));

else

Serial.printin(F{"0V5640 detected."));

#elif defined (OV5642_MINI_5MP_PLUS) || defined (OV5642_MINI_SMP) || defined
(OV5642_MINI_5MP_BIT_ROTATION_FIXED) ||(defined (OV5642_CAM))
/ICheck if the camera module type is OV5642
myCAM.wrSensorReg16_8(0xff, 0x01);
myCAM.rdSensorReg16_8(0v5642_CHIPID_HIGH, &vid);
myCAM.rdSensorReg16_8(0Vv5642_ CHIPID_LOW, &pid),

if({vid 1= 0x56) || (pid != Ox42)}{

Serial.printin(F ("Can't find OV5642 module!"));

}

else

Serial.printin(F("0V5642 detected."));

#endif

//Change to JPEG capture mode and initialize the OV2640 module
myCAM.set_format(JPEG);

myCAM.InitCAM();

#if defined (OV2640_MINI_2MP) || defined (OV2640_CAM)
myCAM.0OV2640_set_JPEG_size(OV2640_320x240),

#elif defined (OV5640_MINI_SMP_PLUS) || defined (OV5640_CAM)
myCAM.write_reg(ARDUCHIP_TIM, VSYNC_LEVEL_MASK); //VSYNC is active HIGH
myCAM.OV5640_set JPEG_size(OV5640_320x240);

#elif defined (OV5642_MINI_SMP_PLUS) || defined (OV5642_MINI_SMP) || defined
(OV5642_MINI_SMP_BIT_ROTATION_FIXED) ||(defined (OV5642_CAM))
myCAM.write_reg(ARDUCHIP_TIM, VSYNC_LEVEL_MASK); //VSYNC is active HIGH
myCAM.OV5640_set_JPEG_size(OV5642_2592x1944);

#endif

myCAM.clear_fifo_flag();

if (wifiType == 0}

if(Istremp(ssid, " SSID")

Serial.printin{F("Please set your SSID"));

while(1);

}
if(\stremp(password,"PASSWORD")X

Serial.printin{F{"Please set your PASSWORD"));
while(1);

}

/f Connect to WiFi network

Serial.printin();

Serial.printin();

Serial.print(F("Connecting to "));
Serial.printin(ssid);

WiFi.mode(WIFI_STA);

WiFi.begin(ssid, password);

while (WiFi.status{) = WL_CONNECTED) {

delay(500);

Serial.print(F("."));

}

Serial.printin(F("WiFi connected"));
Serial.printin{" ");

Serial.printin(WiFi.locallP());

Jelse if (wifiType == 1)

Serial.printin();

Serial.printin();

Serial.print(F("Share AP: &quat;));
Serial.printin(AP_ssid);

Serial.print(F(" The password is: "));
Serial.printin(AP_password);

WiFi.mode(WIFI_AP);

WiFi.softAP(AP_ssid, AP_password),
Serial.printin("&guot;);
Serial.printin(WiFi.softAPIP());

}

/{ Start the server

server.on("/capture", HTTP_GET, serverCapture),
server.on{"/stream", HTTP_GET, serverStream);
server.on("/button", HTTP_GET, serverButton);
server.onNotFound(handleNotFound),

server.begin();

Serial.printin(F("Server started"));
pinMode(PulsePin, OUTPUT);

digitalWrite(PulsePin, LOW);

}

void loop() {

server.handleClient(); //connecting to esp to the IP with a certain handle

}

32

